Representing Functions as Number Machines

Example

Represent the following function as a number machine: $y=3 x-4$.

Represent the following functions as number machines.
$1 \quad y=5 x-7$
$2 y=3+7 x$
$3 y=x-12$
$4 y=5(x-7)$
$5 \quad y=\frac{x}{8}+9$
$6 \quad y=x \div 4$
$7 \quad y=9(x+2)$
$8 \quad y=9 x+2$
$9 \quad y=\frac{x}{4}-9$
$10 \quad y=\frac{3 x+4}{5}+12$

Understanding Gradient

The gradient of a graph is how steeply the line is drawn.
The general formula for a straight line graph is :

$y=\boldsymbol{m} x+c$

where m is the gradient and c is the y-intercept.

The graph to the left has a positive gradient.
Depending on the scale of the graph, it looks like the graph has a gradient of 1 .

This means that for every cm along, the graph rises by 1 cm .

The graph to the right has a negative gradient.
Depending on the scale of the graph, it looks like the graph has a gradient of -1 .

This means that for every cm along, the graph drops by 1 cm .

Look at the graphs below. Some are steeper and some are less steep. The ones that are steeper have a higher gradient.

These graphs gradually get steeper from left to right. The value of m is rising with each one.

